English

The Fibonacci Sequence is Defined by A1 = 1 = A2, an = an − 1 + an − 2 for N > 2 Find a N + 1 a N for N = 1, 2, 3, 4, 5. - Mathematics

Advertisements
Advertisements

Question

The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 

Solution

a1 = 1 = a2an = an − 1 + an − 2 for > 2
Then, we have:

\[a_3 = a_2 + a_1 = 1 + 1 = 2\]

\[ a_4 = a_3 + a_2 = 2 + 1 = 3\]

\[ a_5 = a_4 + a_3 = 3 + 2 = 5\]

\[ a_6 = a_5 + a_4 = 5 + 3 = 8\]

\[\text { For } n = 1, \frac{a_{n + 1}}{a_n} = \frac{a_2}{a_1} = \frac{1}{1} = 1\]

\[\text { For }n = 2, \frac{a_{n + 1}}{a_n} = \frac{a_3}{a_2} = \frac{2}{1} = 2\]

\[\text{For } n = 3, \frac{a_{n + 1}}{a_n} = \frac{a_4}{a_3} = \frac{3}{2}\]

\[\text { For } n = 4, \frac{a_{n + 1}}{a_n} = \frac{a_5}{a_4} = \frac{5}{3}\]

\[\text { For } n = 5, \frac{a_{n + 1}}{a_n} = \frac{a_6}{a_5} = \frac{8}{5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.1 [Page 4]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.1 | Q 5 | Page 4

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the A.P. 4, 9, 14, ... is 254?


Is 302 a term of the A.P. 3, 8, 13, ...?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


Write the sum of first n odd natural numbers.


Write the sum of first n even natural numbers.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×