Advertisements
Advertisements
Question
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
Solution
value of used tractor = Rs. 12000
cash payment = Rs. 6000
balance = Rs. 12000 – Rs. 6000 = Rs. 6000
payment of an installment = Rs. 500
total installments = `6000/12 = 12`
P Interest on principal at 12% per annum for 1 year = `("p" xx 12 xx 1)/100 = 3/25 "P"`
Payment of amount after one year = 500 + Interest
= `500 + 3/25 xx 6000`
Interest after two years = `3/25` × Rs. 5500 Installment
Payment after 2 years = `(500 + 3/25 xx 5500) "Rs"`
Installment after 12 years = 12 × 500 = 6000
Interest = `3/25 (6000 + 5500 + 5000 + ...... "to 12 terms")`
= `3/25 xx 12/2 [12000 - (12 - 1) xx 500]`
= `3/25 xx 12/2 [12000 - 5500]`
= `3/25 xx 12/2 xx 6500`
= Rs. 4680
Total payment = Rs. (12000 + 4680)
= Rs. 16680
APPEARS IN
RELATED QUESTIONS
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Which term of the A.P. 3, 8, 13, ... is 248?
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
Write the common difference of an A.P. whose nth term is xn + y.
Write the sum of first n even natural numbers.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If Sn denotes the sum of first n terms of an A.P. < an > such that
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.