Advertisements
Advertisements
Question
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
Solution
Let d be the common difference and n be the number of terms of the A.P.
Since the first term is a and the second term is b
Therefore, d = b – a
Also, the last term is c
So c = a + (n – 1)(b – a) .....(Since d = b – a)
⇒ n – 1 = `(c - a)/(b - a)`
⇒ n = `1 + (c - a)/(b - a)`
= `(b - a + c - a)/(b - a)`
= `(b + c - 2a)/(b - a)`
Therefore, Sn = `n/2 (a + 1)`
= `((b + c - 2a))/(2(b - a)) (a + c)`
APPEARS IN
RELATED QUESTIONS
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of first n odd natural numbers.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.