हिंदी

If 1 a , 1 B , 1 C Are in A.P., Prove That: a (B +C), B (C + A), C (A +B) Are in A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.

उत्तर

\[\text { Given }: \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text { are in A . P } . \]

\[ \therefore \frac{2}{b} = \frac{1}{a} + \frac{1}{c}\]

\[ \Rightarrow 2ac = ab + bc . . . . (1)\]

\[\text { To prove: } a(b + c), b(c + a), c(a + b) \text { are in A . P } . \]

\[ \Rightarrow 2b(c + a) = a(b + c) + c(a + b)\]

\[\text { LHS: } 2b(c + a)\]

\[ = 2bc + 2ba\]

\[\text { RHS: } a(b + c) + c(a + b)\]

\[ = ab + ac + ac + bc\]

\[ = ab + 2ac + bc\]

\[ = ab + ab + bc + bc (\text { From }(1))\]

\[ = 2ab + 2bc\]

\[ \therefore\text {  LHS = RHS }\]

\[\text { Hence, proved  }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.5 | Q 1.2 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the common difference of an A.P. whose nth term is xn + y.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×