Advertisements
Advertisements
प्रश्न
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
उत्तर
Since a, b, c are in A.P., we have:
2b = a+c
\[\Rightarrow\] b = \[\frac{a + c}{2}\]
Consider RHS:
8 \[b^3\]
\[\text { Substituting b } = \frac{a + c}{2}: \]
\[ \Rightarrow 8 \left( \frac{a + c}{2} \right)^3 \]
\[ \Rightarrow a^3 + c^3 + 3ac\left( a + c \right)\]
\[ \Rightarrow a^3 + c^3 + 3ac(2b)\]
\[ \Rightarrow a^3 + c^3 + 6abc\]
Hence, proved.
APPEARS IN
संबंधित प्रश्न
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
Which term of the A.P. 84, 80, 76, ... is 0?
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
How many numbers of two digit are divisible by 3?
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
Find the sum of all even integers between 101 and 999.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
Write the common difference of an A.P. the sum of whose first n terms is
If m th term of an A.P. is n and nth term is m, then write its pth term.
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.