मराठी

A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years. - Mathematics

Advertisements
Advertisements

प्रश्न

A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.

बेरीज

उत्तर

Cost of machine = Rs. 15625

It will depreciate each year by 20%

∴ Cost of machine at the end of first year

= Rs. `(15625 - (15625 xx 20)/100)`

= Rs. (15625 - 3125)

= Rs. 12500

Cost of machine at the end of second year

= Rs. `(12500 - (12500 xx 20)/100)`

= Rs. [12500 - 2500]

= Rs. 10000

Cost of machine at the end of third year

= Rs. `(10000 - (10000 xx 20)/100)`

= Rs. [10000 - 2000] = Rs. 8000

 Cost of machine at the end of fourth year

= Rs. `(8000 - (8000 xx 20)/100)`

=Rs. [8000 - 1600]

= Rs. 6400

Cost of machine at the end of fifth year

= Rs. `(6400 - (6400 xx 20)/100)`

= Rs. [6400 - 1280]

= Rs. 5120

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ २००]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Miscellaneous Exercise | Q 31 | पृष्ठ २००

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the A.P. 3, 8, 13, ... is 248?


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of first n odd natural numbers.


Find the sum of all odd numbers between 100 and 200.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all integers between 50 and 500 which are divisible by 7.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×