Advertisements
Advertisements
Question
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Solution
Since k – 1, k, k + 2 are consecutive terms of a G.P., we have,
`"k"/("k" - 1) = ("k" + 2)/"k"`
∴ k2 = (k – 1)(k + 2)
∴ k2 = k2 + k – 2
∴ k – 2 = 0
∴ k = 2.
APPEARS IN
RELATED QUESTIONS
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
Write the product of n geometric means between two numbers a and b.
The two geometric means between the numbers 1 and 64 are
Which term of the G.P. 5, 25, 125, 625, … is 510?
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
The numbers x − 6, 2x and x2 are in G.P. Find x
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Find : `sum_("n" = 1)^oo 0.4^"n"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`