Advertisements
Advertisements
Question
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Solution
Let a and r be the 1st term and common ratio of the G.P. respectively.
∴ Sn = `"a"(("r"^"n" - 1)/("r" - 1))`, S2n = `"a"(("r"^(2"n") - 1)/("r" - 1))`, S3n = `"a"(("r"^(3"n") - 1)/("r" - 1))`
∴ S2n – Sn = `"a"(("r"^(2"n") - 1)/("r" - 1)) - "a"(("r"^"n"- 1)/("r" - 1))`
= `"a"/("r" - 1)("r"^(2"n") - 1 - "r"^"n" + 1)`
= `"a"/("r" - 1)("r"^(2"n") - "r"^"n")`
= `"ar"^"n"/("r" - 1)("r"^"n" - 1)`
∴ S2n – Sn = `"r"^"n"*("a"("r"^"n" - 1))/("r" - 1)` ....(i)
S3n – S2n = `"a"(("r"^(3"n") - 1)/("r" - 1)) - "a"(("r"^(2"n") - 1)/("r" - 1))`
= `"a"/("r" - 1)("r"^(3"n") - 1 - "r"^(2"n") + 1)`
= `"a"/("r" - 1)("r"^(3"n") - "r"^(2"n"))`
= `"a"/("r" - 1)*"r"^(2"n")("r"^"n" - 1)`
= `"a"*(("r"^"n" - 1)/("r" - 1))*"r"^(2"n")`
∴ Sn(S3n – S2n) = `["a"*(("r"^"n"- 1)/("r" - 1))]["a"*(("r"^"n" - 1)/("r" - 1))"r"^(2"n")]`
= `["r"^"n"*("a"("r"^"n" - 1))/("r" - 1)]^2`
∴ Sn(S3n – S2n) = (S2n – Sn)2 ...[From (i)]
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Express the recurring decimal 0.125125125 ... as a rational number.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Find the geometric means of the following pairs of number:
2 and 8
Write the product of n geometric means between two numbers a and b.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
For the G.P. if a = `2/3`, t6 = 162, find r.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. If t3 = 20 , t6 = 160 , find S7
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
The third term of a G.P. is 4, the product of the first five terms is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.