English

Find the Sum of the Following Series: 9 + 99 + 999 + ... to N Terms; - Mathematics

Advertisements
Advertisements

Question

Find the sum of the following series:

9 + 99 + 999 + ... to n terms;

Solution

 We have,
9 + 99 + 999 + ... n terms

\[= \left( 9 + 99 + 999 + . . . + \text { to n terms } \right)\]

\[ = \left\{ \left( 10 - 1 \right) + \left( {10}^2 - 1 \right) + \left( {10}^3 - 1 \right) + . . . + \left( {10}^n - 1 \right) \right\}\]

\[ = \left\{ \left( 10 + {10}^2 + {10}^3 + . . . + {10}^n \right) \right\} - \left( 1 + 1 + 1 + 1 . . .\text {  n times } \right)\]

\[ = \left\{ 10 \times \frac{\left( {10}^n - 1 \right)}{10 - 1} - n \right\} \]

\[ = \left\{ \frac{10}{9}\left( {10}^n - 1 \right) - n \right\}\]

\[ = \frac{1}{9}\left\{ {10}^{n + 1} - 9n - 10 \right\}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.3 | Q 4.3 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


The two geometric means between the numbers 1 and 64 are 


For the G.P. if r = − 3 and t6 = 1701, find a.


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find : `sum_("n" = 1)^oo 0.4^"n"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×