Advertisements
Advertisements
Question
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
Options
`(-4)/5`
`1/5`
4
None the these
Solution
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is 4.
Explanation:
Let us consider a G.P. a, ar, ar2, ... with 2n terms.
We have `(a(r^(2n) - 1))/(r - 1) = (5a((r^2)^n - 1))/(r^2 - 1)`
Since common ratio of odd terms will be r2 and number of terms will be n
⇒ `(a(r^(2n) - 1))/(r - 1) = 5 (a(r^(2n) - 1))/((r^2 - 1))`
⇒ a(r + 1) = 5a
i.e., r = 4
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Given a G.P. with a = 729 and 7th term 64, determine S7.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Find the geometric means of the following pairs of number:
a3b and ab3
Find the geometric means of the following pairs of number:
−8 and −2
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
For a G.P. if S5 = 1023 , r = 4, Find a
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.