English

Find the Sum of the Following Series: 0.5 + 0.55 + 0.555 + ... to N Terms. - Mathematics

Advertisements
Advertisements

Question

Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.

Solution

We have,
0.5 + 0.55 + 0.555 + ... n terms

\[S_n\] = 5 [0.1 + 0.11+0.111 + ... n terms]

\[= \frac{5}{9}\left( 0 . 9 + 0 . 99 + 0 . 999 + . . . +\text {  to n terms } \right)\]

\[ = \frac{5}{9}\left\{ \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + . . . \text { n terms } \right\}\]

\[ = \frac{5}{9}\left\{ \left( 1 - \frac{1}{10} \right) + \left( 1 - \frac{1}{100} \right) + \left( 1 - \frac{1}{1000} \right) + . . . \text { n terms } \right\} \]

\[ = \frac{5}{9}\left\{ n - \left( \frac{1}{10} + \frac{1}{{10}^2} + \frac{1}{{10}^3} + . . . \text { n terms } \right) \right\} \]

\[ = \frac{5}{9}\left\{ n - \frac{1}{10}\frac{\left( 1 - \left( \frac{1}{10} \right)^n \right)}{\left( 1 - \frac{1}{10} \right)} \right\}\]

\[ = \frac{5}{9}\left\{ n - \frac{1}{9}\left( 1 - \frac{1}{{10}^n} \right) \right\}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.3 | Q 4.4 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


For the G.P. if a = `2/3`, t6 = 162, find r.


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×