Advertisements
Advertisements
Question
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
Solution
\[a_4 = x\]
\[ \Rightarrow a r^3 = x\]
\[\text { Also }, a_{10} = y\]
\[ \Rightarrow a r^9 = y\]
\[\text { And, } a_{16} = z\]
\[ \Rightarrow a r^{15} = z\]
\[ \because \frac{y}{x} = \frac{a r^9}{a r^3} = r^6 \]
\[\text { and } \frac{z}{y} = \frac{a r^{15}}{a r^9} = r^6 \]
\[ \therefore \frac{y}{x} = \frac{z}{y}\]
\[\text { Therefore, x, y and z are in G . P } .\]
APPEARS IN
RELATED QUESTIONS
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If a, b, c are in G.P., then prove that:
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For the G.P. if r = `1/3`, a = 9 find t7
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.