Advertisements
Advertisements
Question
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Solution
It is given that a and b are the roots of x2 – 3x + p = 0
∴ a + b = 3 and ab = p … (1)
Also, c and d are the roots of x2 – 12x + q = 0
∴ c + d = 12 and cd = q … (2)
It is given that a, b, c, d are in G.P.
Let a = x, b = xr, c = xr2, d = xr3
From (1) and (2), we obtain
x + xr = 3
⇒ x (1 + r) = 3
xr2 + xr3 =12
⇒ xr2 (1 + r) = 12
On dividing, we obtain
`(x^2 (1 + r))/(x (1 + r)) = (12)/(3)`
= r2 = 4
= r = ±2
When r = 2, `x = 3/(1 + 2) = 3/2 = 1`
When r = -2, `x = 3/(1 - 2) = 3/(-1) = -3`
Case I:
When r = 2 and x = 1
ab = x2 r = 2
cd = x2 r5 = 32
∴ `(q + p)/(q - p) = (32 + 2)/(32 - 2) = 34/30 = 17/15`
i.e. (q + p) : (q - p) = 17 :15
Case II:
When r = -2, x = -3
ab = x2 r = -18
cd = x2 r5 = -288
∴ `(q + p)/(q - p) = (-288 - 18)/(-288 + 18) = (-306)/(-270) = 17/15`
i.e., (q + p) : (q - p) = 17 : 15
Thus, in both the cases, we obtain (q+p) : (q − p) = 17 : 15
APPEARS IN
RELATED QUESTIONS
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For the G.P. if r = − 3 and t6 = 1701, find a.
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.