English

If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15. - Mathematics

Advertisements
Advertisements

Question

If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.

Sum

Solution

It is given that a and b are the roots of x– 3x + p = 0

∴ a + b = 3 and ab = p … (1)

Also, c and d are the roots of  x2 – 12x + q = 0

∴ c + d = 12 and cd = q … (2)

It is given that a, b, c, d are in G.P.

Let a = x, b = xr, c = xr2, d = xr3

From (1) and (2), we obtain

x + xr = 3

⇒ x (1 + r) = 3

xr2 + xr3 =12

⇒ xr(1 + r) = 12

On dividing, we obtain

`(x^2 (1 + r))/(x (1 + r)) = (12)/(3)`

= r2 = 4

= r = ±2

When r = 2, `x = 3/(1 + 2) = 3/2 = 1`

When r = -2, `x = 3/(1 - 2) = 3/(-1) = -3`

Case I:

When r = 2 and x = 1

ab = x2 r = 2

cd = x2 r5 = 32

∴ `(q + p)/(q - p) = (32 + 2)/(32 - 2) = 34/30 = 17/15`

i.e. (q + p) : (q - p) = 17 :15

Case II:

When r = -2, x = -3

ab = x2 r = -18

cd =  x2 r5 = -288

∴ `(q + p)/(q - p) = (-288 - 18)/(-288 + 18) = (-306)/(-270) = 17/15`

i.e., (q + p) : (q - p) = 17 : 15

Thus, in both the cases, we obtain (q+p) : (q − p) = 17 : 15

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Miscellaneous Exercise [Page 199]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Miscellaneous Exercise | Q 18 | Page 199

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For the G.P. if r = − 3 and t6 = 1701, find a.


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×