Advertisements
Advertisements
प्रश्न
Find the rational number whose decimal expansion is \[0 . 423\].
उत्तर
\[\text { Let the rational number S be } 0 . 4\overline{23} . \]
\[ \because S = 0 . 4\overline{23}= 0 . 4 + 0 . 023 + 0 . 00023 + 0 . 0000023 + . . . \infty \]
\[ \Rightarrow S = 0 . 4 + 0 . 023\left[ 1 + {10}^{- 2} + {10}^{- 4} + . . . \infty \right]\]
\[\text { Clearly, S is a geometric series withthe first term, a, being1 and the common ratio, r, being } {10}^{- 2} . \]
\[ \therefore S = 0 . 4 + 0 . 023\left[ \frac{1}{1 - {10}^{- 2}} \right]\]
\[ \Rightarrow S = 0 . 4 + \frac{2 . 3}{99}\]
\[ \Rightarrow S = \frac{419}{990}\]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Express the recurring decimal 0.125125125 ... as a rational number.
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Find the geometric means of the following pairs of number:
2 and 8
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Which term of the G.P. 5, 25, 125, 625, … is 510?
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. if S5 = 1023 , r = 4, Find a
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.