मराठी

Find the Rational Number Whose Decimal Expansion is 0 . 423 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the rational number whose decimal expansion is \[0 . 423\].

उत्तर

\[\text { Let the rational number S be } 0 . 4\overline{23} . \]

\[ \because S = 0 . 4\overline{23}= 0 . 4 + 0 . 023 + 0 . 00023 + 0 . 0000023 + . . . \infty \]

\[ \Rightarrow S = 0 . 4 + 0 . 023\left[ 1 + {10}^{- 2} + {10}^{- 4} + . . . \infty \right]\]

\[\text { Clearly, S is a geometric series withthe first term, a, being1 and the common ratio, r, being } {10}^{- 2} . \]

\[ \therefore S = 0 . 4 + 0 . 023\left[ \frac{1}{1 - {10}^{- 2}} \right]\]

\[ \Rightarrow S = 0 . 4 + \frac{2 . 3}{99}\]

\[ \Rightarrow S = \frac{419}{990}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.4 | Q 7 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


For the G.P. if r = − 3 and t6 = 1701, find a.


Which term of the G.P. 5, 25, 125, 625, … is 510?


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. a = 2, r = `-2/3`, find S6


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×