हिंदी

Find the sum of the following geometric series: 35+452+353+454+.... to 2n terms; - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;

योग

उत्तर

Common Ratio = r = `(3/5)/(4/5^2) = 3/5 × 25/4 = 15/4`

∴ Sum of GP for n terms = `[a(r^n - 1)]/(r - 1)`   ...(1)

⇒ a = `3/5, r = 15/4`, n = 2n

∴ Substituting the above values in (1), we get,

⇒ `[a(r^n - 1)]/(r - 1)`

⇒ `{3/5[(15/4)^"2n" - 1]}/(15/4 - 1)`

⇒ `{3/5[(15/4)^"2n" - 1]}/((15 - 1)/4)`

⇒ `{3/5[(15/4)^"2n" - 1]}/((11)/4)`

⇒ `{3[(15/4)^"2n" - 1]× 4}/(5 × 11)`

⇒ `{12[(15/4)^"2n" - 1]}/(55)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.3 | Q 2.5 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


Find the geometric means of the following pairs of number:

2 and 8


If logxa, ax/2 and logb x are in G.P., then write the value of x.


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


For a G.P. a = 2, r = `-2/3`, find S6


For a G.P. if S5 = 1023 , r = 4, Find a


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Express the following recurring decimal as a rational number:

`51.0bar(2)`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×