हिंदी

The Value of 91/3 . 91/9 . 91/27 ... Upto Inf, is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of 91/3 . 91/9 . 91/27 ... upto inf, is 

विकल्प

  • (a) 1 

  • (b) 3 

  • (c) 9 

  • (d) none of these

MCQ

उत्तर

\[(b) 3\]
\[ 9^\frac{1}{3} \times 9^\frac{1}{9} \times 9^\frac{1}{27} \times . . . \infty \]
\[ = 9^\left( \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + . . . \infty \right) \]
\[\text{ Here, it is a G . P . with } a = \frac{1}{3}\text{ and } r = \frac{1}{3} . \]
\[ \therefore 9^\left( \frac{\frac{1}{3}}{1 - \frac{1}{3}} \right) \]
\[ = 9^\left( \frac{1}{2} \right) = 3\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.8 | Q 9 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


If logxa, ax/2 and logb x are in G.P., then write the value of x.


Write the product of n geometric means between two numbers a and b

 


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


For a G.P. if S5 = 1023 , r = 4, Find a


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×