हिंदी

If the G.P.'S 5, 10, 20, ... and 1280, 640, 320, ... Have Their Nth Terms Equal, Find the Value of N. - Mathematics

Advertisements
Advertisements

प्रश्न

If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.

उत्तर

\[\text { Given }: \]

\[\text { First term, } a = 5 \]

\[\text { Common ratio }, r = 2\]

\[ a_n = \left( 5 \right) \left( 2 \right)^{n - 1} . . . \left( 1 \right)\]

\[\text { Similarly, } a_n = \left( 1280 \right) \left( \frac{1}{2} \right)^{n - 1} . . . \left( 2 \right)\]

\[\text { From }\left( 1 \right) \text { and } \left( 2 \right)\]

\[\left( 5 \right) \left( 2 \right)^{n - 1} = \left( 1280 \right) \left( \frac{1}{2} \right)^{n - 1} \]

\[ \Rightarrow \frac{1}{256} = \left( \frac{1}{4} \right)^{n - 1} \]

\[ \Rightarrow \left( \frac{1}{4} \right)^4 = \left( \frac{1}{4} \right)^{n - 1} \]

\[ \Rightarrow n - 1 = 4 \]

\[ \Rightarrow n = 5\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.1 | Q 11 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


Find the geometric means of the following pairs of number:

a3b and ab3


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The third term of G.P. is 4. The product of its first 5 terms is ______.


The sum or difference of two G.P.s, is again a G.P.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×