हिंदी

If X is Positive, the Sum to Infinity of the Series 1 1 + X − 1 − X ( 1 + X ) 2 + ( 1 − X ) 2 ( 1 + X ) 3 − ( 1 − X ) 3 ( 1 + X ) 4 + . . . . . . I S - Mathematics

Advertisements
Advertisements

प्रश्न

If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]

विकल्प

  • (a) 1/2

  • (b) 3/4 

  • (c) 1 

  • (d) none of these 

MCQ

उत्तर

(a) \[\frac{1}{2}\] 

\[\text{ Let } S = \frac{1}{\left( 1 + x \right)} - \frac{\left( 1 - x \right)}{\left( 1 + x \right)^2} + \frac{\left( 1 - x \right)^2}{\left( 1 + x \right)^3} - \frac{\left( 1 - x \right)^3}{\left( 1 + x \right)^4} + . . . \infty \]
\[\text{ It is clear that it is a G . P . with a } = \frac{1}{\left( 1 + x \right)} \text{ and }r = - \frac{\left( 1 - x \right)}{\left( 1 + x \right)} . \]
\[ \therefore S = \frac{a}{\left( 1 - r \right)}\]
\[ \Rightarrow S = \frac{\frac{1}{\left( 1 + x \right)}}{\left[ 1 - \left( - \frac{\left( 1 - x \right)}{\left( 1 + x \right)} \right) \right]}\]
\[ \Rightarrow S = \frac{\frac{1}{\left( 1 + x \right)}}{\left[ 1 + \frac{\left( 1 - x \right)}{\left( 1 + x \right)} \right]}\]
\[ \Rightarrow S = \frac{\frac{1}{\left( 1 + x \right)}}{\left[ \frac{\left( 1 + x \right) + \left( 1 - x \right)}{\left( 1 + x \right)} \right]}\]
\[ \Rightarrow S = \frac{1}{2}\]
\[\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.8 | Q 17 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Evaluate `sum_(k=1)^11 (2+3^k )`


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational number whose decimal expansion is \[0 . 423\].


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


For the G.P. if r = `1/3`, a = 9 find t7


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For a G.P. if a = 2, r = 3, Sn = 242 find n


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Express the following recurring decimal as a rational number:

`0.bar(7)`


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×