हिंदी

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.

योग

उत्तर

Let the geometric progression be a, ar, ar2, …..

First term = a, common ratio = r

Sum of three terms = `("a"(1 - "r"^3))/(1 - "r") = 16` ..........(i)

Fourth term = a × rn -1 = ar4-1 = ar3 

Sum of next three terms = `("ar"^3(1 - "r"^3))/(1 - "r") = 128` ........(ii)

Dividing equation (ii) by (i), we get

`("ar"^3(1 - "r"^3))/(1 - "r") xx (1 - "r")/("a"(1 - "r"^3))`

= `128/16`

= 8

∴ r3 = 8 or r = 2

∴ On keeping the value of r in equation (i)

`("a"(1 - 8))/(1 - 2) = 16` or 7a = 16

∴ a = `16/7`

Here r > 1

∴ Sn = `(16/7(2^"n" - 1))/(2 -1)`

= `16/7 (2^"n" - 1)`

Hence a = `16/7`, r = 2, Sn = `16/7(2"n" - 1)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.3 | Q 14 | पृष्ठ १९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Which term of the G.P. 5, 25, 125, 625, … is 510?


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a G.P. If t3 = 20 , t6 = 160 , find S7


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×