हिंदी

If A, B, C, D Are in G.P., Prove That: (A2 − B2), (B2 − C2), (C2 − D2) Are in G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.

उत्तर

a, b, c and d are in G.P.

\[\therefore b^2 = ac\]

\[ad = bc \]

\[ c^2 = bd\]   .......(1)

\[\left( b^2 - c^2 \right)^2 = \left( b^2 \right)^2 - 2 b^2 c^2 + \left( c^2 \right)^2 \]

\[ \Rightarrow \left( b^2 - c^2 \right)^2 = \left( ac \right)^2 - b^2 c^2 - b^2 c^2 + \left( bd \right)^2 \left[ \text { Using } (1) \right]\]

\[ \Rightarrow \left( b^2 - c^2 \right)^2 = a^2 c^2 - b^2 c^2 - a^2 d^2 + b^2 d^2 \left[ \text { Using } (1) \right]\]

\[ \Rightarrow \left( b^2 - c^2 \right)^2 = c^2 \left( a^2 - b^2 \right) - d^2 \left( a^2 - b^2 \right)\]

\[ \Rightarrow \left( b^2 - c^2 \right)^2 = \left( a^2 - b^2 \right)\left( c^2 - d^2 \right)\]

\[\text { Therefore, } \left( a^2 - b^2 \right), \left( b^2 - c^2 \right) \text { and } \left( c^2 - d^2 \right) \text { are also in G . P } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 11.2 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate `sum_(k=1)^11 (2+3^k )`


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


The numbers x − 6, 2x and x2 are in G.P. Find x


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The sum or difference of two G.P.s, is again a G.P.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×