Advertisements
Advertisements
प्रश्न
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
उत्तर
a, b, c and d are in G.P.
\[\therefore b^2 = ac\]
\[ad = bc \]
\[ c^2 = bd\] .......(1)
\[\left( b^2 - c^2 \right)^2 = \left( b^2 \right)^2 - 2 b^2 c^2 + \left( c^2 \right)^2 \]
\[ \Rightarrow \left( b^2 - c^2 \right)^2 = \left( ac \right)^2 - b^2 c^2 - b^2 c^2 + \left( bd \right)^2 \left[ \text { Using } (1) \right]\]
\[ \Rightarrow \left( b^2 - c^2 \right)^2 = a^2 c^2 - b^2 c^2 - a^2 d^2 + b^2 d^2 \left[ \text { Using } (1) \right]\]
\[ \Rightarrow \left( b^2 - c^2 \right)^2 = c^2 \left( a^2 - b^2 \right) - d^2 \left( a^2 - b^2 \right)\]
\[ \Rightarrow \left( b^2 - c^2 \right)^2 = \left( a^2 - b^2 \right)\left( c^2 - d^2 \right)\]
\[\text { Therefore, } \left( a^2 - b^2 \right), \left( b^2 - c^2 \right) \text { and } \left( c^2 - d^2 \right) \text { are also in G . P } .\]
APPEARS IN
संबंधित प्रश्न
Evaluate `sum_(k=1)^11 (2+3^k )`
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c are in G.P., then prove that:
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find x
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
The sum or difference of two G.P.s, is again a G.P.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.