हिंदी

Mark the Correct Alternative in the Following Question: Let S Be the Sum, P Be the Product and R Be the Sum of the Reciprocals of 3 Terms of a G.P. Then P2r3 : S3 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 

विकल्प

  • (a) 1 : 1     

  •  (b) (Common ratio)n : 1     

  • (c) (First term)2 : (Common ratio)2  

  • (d) None of these

MCQ

उत्तर

\[\text{ Let the three terms of the G . P . be \frac{a}{r}, a, ar . Then }\]
\[S = \frac{a}{r} + a + ar\]
\[ = a\left( \frac{1}{r} + 1 + r \right)\]
\[ = a\left( \frac{1 + r + r^2}{r} \right)\]
\[ = \frac{a\left( r^2 + r + 1 \right)}{r}\]
\[\text{ Also }, \]
\[P = \frac{a}{r} \times a \times ar = a^3 \]
\[\text{ And }, \]
\[R = \frac{r}{a} + \frac{1}{a} + \frac{1}{ar}\]
\[ = \frac{1}{a}\left( r + 1 + \frac{1}{r} \right)\]
\[ = \frac{1}{a}\left( \frac{r^2 + r + 1}{r} \right)\]
\[\text{ Now }, \]
\[\frac{P^2 R^3}{S^3} = \frac{\left( a^3 \right)^2 \times \left[ \frac{1}{a}\left( \frac{r^2 + r + 1}{r} \right) \right]^3}{\left[ a\left( \frac{r^2 + r + 1}{r} \right) \right]^3}\]
\[ = \frac{a^6 \times \frac{1}{a^3} \left( \frac{r^2 + r + 1}{r} \right)^3}{a^3 \left( \frac{r^2 + r + 1}{r} \right)^3}\]
\[ = \frac{1}{1}\]
\[\text{ So, the ratio is }1: 1 .\]

Hence, the correct alternative is option (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.8 | Q 25 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. if S5 = 1023 , r = 4, Find a


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Express the following recurring decimal as a rational number:

`2.bar(4)`


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×