हिंदी

Answer the following: If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 

योग

उत्तर

a = (27)2 

tn = arn–1

∴ t7 = ar6

∴ ar6 = 82

∴ r6 = `8^2/27^2 = 2^6/3^6`

∴ r = `2/3`

Sn = `("a"(1 - "r"^"n"))/(1 - "r")` for r < 1

∴ S8 = `((27)^2[1 - (2/3)^"s"])/(1 - 2/3)`

= `3.(27)^2 [(3^8 - 2^8)/3^8]`

= `3^7 ((6561 - 256))/3^8`

∴ S8 = `6305/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (25) | पृष्ठ ४२

संबंधित प्रश्न

Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×