हिंदी

Insert 5 Geometric Means Between 32 9 and 81 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .

उत्तर

\[\text{Let the 5 G . M . s between } \frac{32}{9} \text{ and } \frac{81}{2} \text{be }G_1 , G_2 , G_3 , G_4 \text{and} G_5 . \]

\[\frac{32}{9}, G_1 , G_2 , G_3 , G_4 , G_5 , \frac{81}{2}\]

\[ \Rightarrow a = \frac{32}{9}, n = 7 \text { and } a_7 = \frac{81}{2}\]

\[ \because a_7 = \frac{81}{2}\]

\[ \Rightarrow a r^6 = \frac{81}{2}\]

\[ \Rightarrow r^6 = \frac{81}{2} \times \frac{9}{32}\]

\[ \Rightarrow r^6 = \left( \frac{3}{2} \right)^6 \]

\[ \Rightarrow r = \frac{3}{2}\]

\[ \therefore G_1 = a_2 = ar = \frac{32}{9}\left( \frac{3}{2} \right) = \frac{16}{3}\]

\[ G_2 = a_3 = a r^2 = \frac{32}{9} \left( \frac{3}{2} \right)^2 = 8\]

\[ G_3 = a_4 = a r^3 = \frac{32}{9} \left( \frac{3}{2} \right)^3 = 12\]

\[ G_4 = a_5 = a r^4 = \frac{32}{9} \left( \frac{3}{2} \right)^4 = 18\]

\[ G_5 = a_6 = a r^5 = \frac{32}{9} \left( \frac{3}{2} \right)^5 = 27\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.6 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.6 | Q 3 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For a G.P. if S5 = 1023 , r = 4, Find a


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×