English

Find the 4th Term from the End of the G.P. 2 27 , 2 9 , 2 3 , . . . , 162 - Mathematics

Advertisements
Advertisements

Question

Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

Solution

\[\text { Here, first term, } a = \frac{2}{27}\]

\[\text { Common ratio}, r = \frac{a_2}{a_1} = \frac{\frac{2}{9}}{\frac{2}{27}} = 3 \]

\[\text { Last term, } l = 162\]

\[\text { After reversing the given G . P . , we get another G . P . whose first term is l and common ratio is } \frac{1}{r} . \]

\[ \therefore 4th \text { term from the end } = l \left( \frac{1}{r} \right)^{4 - 1} = (162) \left( \frac{1}{3} \right)^3 = 6\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.1 | Q 4 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


For the G.P. if a = `2/3`, t6 = 162, find r.


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


The third term of G.P. is 4. The product of its first 5 terms is ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×