Advertisements
Advertisements
Question
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Solution
We have,
\[\frac{a_2}{a_1} = \frac{0 . 02}{0 . 004} = 5, \frac{a_3}{a_2} = \frac{0 . 1}{0 . 02} = 5\]
\[ \Rightarrow \frac{a_2}{a_1} = \frac{a_3}{a_2} = 5\]
\[\text { The given progression is a G . P . whose first term, a is 0 . 004 and common ratio, r is 5 }. \]
\[\text { Let the nth term be } 12 . 5 . \]
\[ \therefore a_n = 12 . 5\]
\[ \Rightarrow a r^{n - 1} = 12 . 5\]
\[ \Rightarrow (0 . 004)(5 )^{n - 1} = 12 . 5\]
\[ \Rightarrow (5 )^{n - 1} = \frac{12 . 5}{0 . 004}\]
\[ \Rightarrow (5 )^{n - 1} = 3125\]
\[ \Rightarrow (5 )^{n - 1} = (5 )^5 \]
\[\text { Comparing the power of both the sides }\]
\[ \Rightarrow n - 1 = 5\]
\[ \Rightarrow n = 6\]
\[\text { Thus, 6th term of the given G . P . is } 12 . 5\]
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The two geometric means between the numbers 1 and 64 are
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.