English

Find the sum of the following geometric series: a1+i+a(1+i)2+a(1+i)3+...+a(1+i)n. - Mathematics

Advertisements
Advertisements

Question

Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]

Sum

Solution

`a/(1 + i) + a/(1 + i)^2 + a/(1 + i)^3 + ...... + a/(1 + i)^n`

∴ First term, A = `a/(1 + i)`, No. of terms = n,

Common ratio, R = `(a/(1 + i)^2)/(a/(1 + i))`

R = `(cancel(a)/cancel((1 + i))^2)/(cancel(a)/cancel(1 + i))`

∴ R = `1/(1 + i)`

`"S"_"n" = "A" [(1 - "R"^n)/(1 - "R")]`

`= a/(1 + i) [(1 - (1/(1 + i))^n)/(1 - 1/(1 + i))]`

`= a/cancel(1 + i) [(1 - 1/(1 + i)^n)/((cancel(1)  +  i  - cancel(1))/cancel(1 + i))]`

`= a/i xx i/i [1 - (1 + i)^-n]`

`= (ai)/i^2 [1 - (1 + i)^-n]`

`= (ai)/-1 [1 - (1 + i)^-n]`

= - ai [1 - (1 + i)-n]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.3 | Q 2.6 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Given a G.P. with a = 729 and 7th term 64, determine S7.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers 3, x, and x + 6 form are in G.P. Find nth term


The numbers x − 6, 2x and x2 are in G.P. Find nth term


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×