English

The third term of G.P. is 4. The product of its first 5 terms is ______. - Mathematics

Advertisements
Advertisements

Question

The third term of G.P. is 4. The product of its first 5 terms is ______.

Options

  • 4

  • 4

  • 4

  • None of these

MCQ
Fill in the Blanks

Solution

The third term of G.P. is 4. The product of its first 5 terms is 45.

Explanation:

Given that T3 = 4

⇒ ar3–1 = 4

⇒ ar2 = 4

Product of first 5 terms = a · ar · ar2 · ar3 · ar4

= a5r10

= (ar2)5

= (4)

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise [Page 163]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise | Q 18 | Page 163

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Express the recurring decimal 0.125125125 ... as a rational number.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. If t4 = 16, t9 = 512, find S10


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×