हिंदी

The Sum of First Three Terms of a G.P. is 13/12 and Their Product is − 1. Find the G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.

उत्तर

Let the first three numbers of the given G.P. be \[\frac{a}{r}, \text { a and ar }\]

∴ Product of the G.P. = −1

\[\Rightarrow\] a3 = −1
\[\Rightarrow\] a = −1
Similarly, Sum of the G.P. =  \[\frac{13}{12}\]
\[\Rightarrow \frac{a}{r} + a + ar = \frac{13}{12}\]
Substituting the value of = −1

\[\frac{- 1}{r} - 1 - r = \frac{13}{12}\]

\[ \Rightarrow 12 r^2 + 25r + 12 = 0\]

\[ \Rightarrow 12 r^2 + 16r + 9r + 12 = 0\]

\[ \Rightarrow 4r\left( 3r + 4 \right) + 3\left( 3r + 4 \right) = 0\]

\[ \Rightarrow \left( 4r + 3 \right)\left( 3r + 4 \right) = 0\]

\[ \Rightarrow r = - \frac{3}{4}, - \frac{4}{3}\]

Hence, the G.P. for a = −1 and r = \[- \frac{3}{4}\] is \[\frac{4}{3}, - 1 \text { and } \frac{3}{4}\].

And, the G.P. for a = −1 and r =\[- \frac{4}{3}\] is \[\frac{3}{4}, - 1 \text { and } \frac{4}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.2 | Q 3 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


Find the geometric means of the following pairs of number:

2 and 8


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


For the G.P. if a = `2/3`, t6 = 162, find r.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


For a G.P. If t4 = 16, t9 = 512, find S10


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×