मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term

बेरीज

उत्तर

Given, t4 = 48, t8 = 768

tn = arn–1

∴ t4 = ar3

∴ ar3 = 48    ...(i)

and ar7 = 768   ...(ii)

Equation (ii) ÷ equation (i), we get

∴ `"ar"^7/"ar"^3 = 768/48`

∴ r4 = 16

∴ r = 2

Substituting r = 2 (i), we get

a.(23) = 48

∴ a = 6

∴ t10 = ar9

∴ t10 = ar9

= 6(29)

= 3072

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (1) | पृष्ठ ४१

संबंधित प्रश्‍न

Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Express the recurring decimal 0.125125125 ... as a rational number.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


Write the product of n geometric means between two numbers a and b

 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For the G.P. if r = − 3 and t6 = 1701, find a.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The third term of a G.P. is 4, the product of the first five terms is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×