Advertisements
Advertisements
प्रश्न
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
उत्तर
Let a be the first term and r be the common ratio of the G.P.
\[\therefore S_3 = a\left( \frac{r^3 - 1}{r - 1} \right) \text { and }S_6 = a\left( \frac{r^6 - 1}{r - 1} \right)\]
\[\text { Then, according to the question }\]
\[ \frac{S_3}{S_6} = \frac{a\left( \frac{r^3 - 1}{r - 1} \right)}{a \left( \frac{r^6 - 1}{r - 1} \right)} \]
\[ \Rightarrow \frac{125}{152} = \frac{r^3 - 1}{r^6 - 1}\]
\[ \Rightarrow 125 \left( r^6 - 1 \right) = 152 \left( r^3 - 1 \right)\]
\[ \Rightarrow 125 r^6 - 125 = 152 r^3 - 152\]
\[ \Rightarrow 125 r^6 - 152r {}^3 + 27 = 0\]
\[\text { Now, let } r^3 = y \]
\[ \therefore 125 y^2 - 152y + 27 = 0\]
\[\text { Now, applying the quadatic formula }\]
\[y = \left\{ \frac{- b \pm \sqrt{b^2 - 4ac}}{2a} \right\} \]
\[ \Rightarrow y = \left\{ \frac{152 \pm \sqrt{9604}}{250} \right\}\]
\[ \Rightarrow y = \left\{ \frac{152 + \sqrt{9604}}{250} \right\} or \left\{ \frac{152 - \sqrt{9604}}{250} \right\}\]
\[ \Rightarrow y = 1 \text { or } \frac{27}{125}\]
\[ \therefore r^3 = 1\text { or } r^3 = \frac{27}{125}\]
\[\text { But, r = 1 is not possible } . \]
\[ \therefore r = \sqrt[3]{\frac{27}{125}} = \frac{3}{5}\]
APPEARS IN
संबंधित प्रश्न
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Find the geometric means of the following pairs of number:
−8 and −2
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
For the G.P. if a = `2/3`, t6 = 162, find r.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. If t3 = 20 , t6 = 160 , find S7
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.