Advertisements
Advertisements
प्रश्न
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
उत्तर
a, b and c are in G.P.
∴ \[b^2 = ac . . . . . . . (1)\]
\[\left( ab + bc \right)^2 = \left( ab \right)^2 + 2a b^2 c + \left( bc \right)^2 \]
\[ \Rightarrow \left( ab + bc \right)^2 = \left( ab \right)^2 + a b^2 c + a b^2 c + \left( bc \right)^2 \]
\[ \Rightarrow \left( ab + bc \right)^2 = a^2 b^2 + ac\left( ac \right) + b^2 \left( b^2 \right) + b^2 c^2 \left[ \text { Using } (1) \right]\]
\[ \Rightarrow \left( ab + bc \right)^2 = a^2 \left( b^2 + c^2 \right) + b^2 \left( b^2 + c^2 \right)\]
\[ \Rightarrow \left( ab + bc \right)^2 = \left( b^2 + c^2 \right)\left( a^2 + b^2 \right)\]
\[\text { Therefore }, \left( a^2 + b^2 \right), \left( b^2 + c^2 \right) \text { and }\left( ab + bc \right) \text { are also in G . P } . \]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
Write the product of n geometric means between two numbers a and b.
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Which term of the G.P. 5, 25, 125, 625, … is 510?
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers x − 6, 2x and x2 are in G.P. Find x
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.