Advertisements
Advertisements
Question
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
Solution
\[\text { a, b and c are in A . P } . \]
\[ \therefore 2b = a + c . . . . . . . (i)\]
\[\text { a, x and b are in G . P } . \]
\[ \therefore x^2 = ab . . . . . . . (ii)\]
\[\text { And, b, y and c are also in G . P } . \]
\[ \therefore y^2 = bc . . . . . . . (iii)\]
\[\text { Now, putting the values of a and c: } \]
\[ \Rightarrow 2b = \frac{x^2}{b} + \frac{y^2}{b}\]
\[ \Rightarrow 2 b^2 = x^2 + y^2 \]
\[\text { Therefore,} x^2 , b^2 \text { and } y^2 \text { are also in A . P } . \]
APPEARS IN
RELATED QUESTIONS
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Find the geometric means of the following pairs of number:
2 and 8
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if a = `2/3`, t6 = 162, find r.
Which term of the G.P. 5, 25, 125, 625, … is 510?
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
The third term of a G.P. is 4, the product of the first five terms is ______.