English

The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______. - Mathematics

Advertisements
Advertisements

Question

The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.

Options

  • 12 cm

  • 6 cm

  • 18 cm

  • 3 cm

MCQ
Fill in the Blanks

Solution

The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is 12 cm.

Explanation:

Let the length, breadth and height of a rectangular block be `a/r`, a abd ar. [Since they are is G.P]

∴ Volume = l × b × h

216 = `a/r xx a xx ar`

⇒ a3 = 216

⇒ a = 6

Now total surface area = `2[lb + bh + lh]`

252 = `2[a/r * a + a * ar + a/r]`

⇒ 252 = `2[a^2/r + a^2r + a^2]`

⇒ 252 = `2a^2 [1/r + r + 1]`

⇒ 252 = `2 xx (6)^2 [(1 + r^2 + r)/r]`

⇒ 252 = `72[(1 + r^2 + r)/r]`

⇒ `252/72 = (1 + r + r^2)/r`

⇒ `7/2 = (1 + r + r^2)/r`

⇒ 2 + 2r + 2r2 = 7r

⇒ 2r2 – 5r + 2 = 0

⇒ 2r2 – 4r – r + 2 = 0

⇒ 2r(r – 2) –1(r – 2) = 0

⇒ (r – 2)(2r – 1) = 0

⇒ r – 2 = 0 and 2r – 1 = 0

∴ r = 2, `1/2`

Therefore, the three edge are:

If r = 2 then edges are 3, 6, 12

If r = `1/2` then edges are 12, 6, 3

So, the length of the longest edge = 12

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise [Page 163]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise | Q 26 | Page 163

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


The fractional value of 2.357 is 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×