मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find : ∑r=1∞4(0.5)r - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find : `sum_("r" = 1)^oo 4(0.5)^"r"`

बेरीज

उत्तर

`sum_("r" = 1)^oo 4(0.5)^"r" = 4 sum_("r" = 1)^oo (0.5)^"r"`

= 4[0.5 + (0.5)2 + (0.5)3 + ...]

= `4[5/10 + (5/10)^2 + (5/10)^3 + ...]`

= `4[1/2 + (1/2)^2 + (1/2)^3 + ....]`    ...(1)

The terms `1/2, (1/2)^2, (1/2)^3` ... form a G.P. with

a = `1/2`, r = `1/2`

Since |r| = `|1/2| = 1/2 < 1`, the sum to infinity of this G.P. exist and

S = `"a"/(1 - "r")`

= `((1/2))/(1 - (1/2))` = 1

∴ from (1),

`sum_("r" = 1)^oo 4(0.5)^"r"` = 4 x 1 = 4.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.3 [पृष्ठ ३४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Exercise 2.3 | Q 6. (i) | पृष्ठ ३४

संबंधित प्रश्‍न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


Find the geometric means of the following pairs of number:

2 and 8


Write the product of n geometric means between two numbers a and b

 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


For the G.P. if a = `7/243`, r = 3 find t6.


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×