मराठी

A Man Saved Rs 16500 in Ten Years. in Each Year After the First He Saved Rs 100 More than He Did in the Receding Year. How Much Did He Save in the First Year? - Mathematics

Advertisements
Advertisements

प्रश्न

A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?

उत्तर

Let the amount saved by the man in the first year be Rs A.
Let d be the common difference.
Let \[S_{10}\] denote the amount he saves in ten years.
Here, n =10, d =100

We know:

\[S_n = \frac{n}{2}\left\{ 2A + \left( n - 1 \right)d \right\}\]

\[ \therefore S_{10} = \frac{10}{2}\left\{ 2A + \left( 10 - 1 \right)100 \right\}\]

\[ \Rightarrow 16500 = 5\left\{ 2A + 900 \right\}\]

\[ \Rightarrow 3300 = 2A + 900\]

\[ \Rightarrow A = 1200\]

Therefore, the man saved Rs 1200 in the first year.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.7 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.7 | Q 1 | पृष्ठ ४९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


Is 302 a term of the A.P. 3, 8, 13, ...?


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of first n natural numbers.


Find the sum of all integers between 84 and 719, which are multiples of 5.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P. 


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×