Advertisements
Advertisements
प्रश्न
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
पर्याय
\[\frac{1}{n}\]
\[\frac{n - 1}{n}\]
\[\frac{n + 1}{2n}\]
\[\frac{n + 1}{n}\]
उत्तर
\[\frac{n + 1}{n}\]
Given:
Sum of the even natural numbers = k\[\times\] Sum of the odd natural numbers
\[\frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\} = k \times \frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}\]
\[ \Rightarrow \left\{ 2 \times 2 + \left( n - 1 \right)2 \right\} = k \times \left\{ 2 \times 1 + \left( n - 1 \right)2 \right\}\]
\[ \Rightarrow \frac{4 + \left( n - 1 \right)2}{2 + \left( n - 1 \right)2} = k\]
\[ \Rightarrow \frac{n + 1}{n} = k\]
APPEARS IN
संबंधित प्रश्न
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of first n natural numbers.
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.