मराठी

How Many Terms Are There in the A.P. Whose First and Fifth Terms Are −14 and 2 Respectively and the Sum of the Terms is 40? - Mathematics

Advertisements
Advertisements

प्रश्न

How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?

उत्तर

\[\text { We have: } \]

\[ a = - 14 \text { and } S_n = 40 . . . (i)\]

\[ a_5 = 2\]

\[ \Rightarrow a + \left( 5 - 1 \right)d = 2\]

\[ \Rightarrow - 14 + 4d = 2\]

\[ \Rightarrow 4d = 16\]

\[ \Rightarrow d = 4 . . . (ii)\]

\[\text { Also }, S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ \Rightarrow 40 = \frac{n}{2}\left[ 2\left( - 14 \right) + (n - 1) \times 4 \right] (\text { From }(i) \text { and } (ii))\]

\[ \Rightarrow 80 = n\left[ - 28 + 4n - 4 \right]\]

\[ \Rightarrow 80 = 4 n^2 - 32n\]

\[ \Rightarrow n^2 - 8n - 20 = 0\]

\[ \Rightarrow (n - 10)(n + 2) = 0\]

\[ \Rightarrow n = 10, - 2\]

\[\text { But, n cannot be negative } . \]

\[ \therefore n = 10 \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.4 | Q 16 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the A.P. 4, 9, 14, ... is 254?


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


Write the sum of first n odd natural numbers.


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2 


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×