Advertisements
Advertisements
प्रश्न
Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)
उत्तर
Let S = (702 – 692) + (682 – 672) + ... + (22 – 12)
∴ S = (22 – 12) + (42 – 32) + … + (702 – 692)
Here, 2, 4, 6, …, 70 is an A.P. with rth term = 2r
and 1, 3, 5, …, 69 in A.P. with rth term = 2r – 1
∴ S = `sum_("r" = 1)^35[(2"r")^2 - (2"r" - 1)^2]`
= `sum_("r" = 1)^35[4"r"^2 - (4"r"^2 - 4"r" + 1)]`
= `sum_("r" = 1)^35(4"r" - 1)`
= `4sum_("r" = 1)^35"r" - sum_("r" = 1)^35 1`
= `4.(35 xx 36)/2 - 35`
= (72 – 1) (35)
= 71 × 35
= 2485
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms 3 + 33 + 333 + 3333 + …
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
Find the sum to n terms 0.7 + 0.77 + 0.777 + ...
Find Sn of the following arithmetico - geometric sequence:
1, 4x, 7x2, 10x3, 13x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …
Find Sn of the following arithmetico - geometric sequence:
3, 12, 36, 96, 240, …
Find the sum to infinity of the following arithmetico - geometric sequence:
`3, 6/5, 9/25, 12/125, 15/625, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, -4/3, 7/9, -10/27 ...`
Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`
Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... + "r"^3)/("r"("r" + 1))]`
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms
Find the sum 22 + 42 + 62 + 82 + ... upto n terms
If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... "upto n terms")/(1 + 2 + 3 + 4 + ... "upto n terms") = 100/3,` find n
Answer the following:
Find 2 + 22 + 222 + 2222 + ... upto n terms
Answer the following:
Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`
Answer the following:
Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms
Answer the following:
Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms
Answer the following:
Find 122 + 132 + 142 + 152 + ... 202
Answer the following:
If `(1 + 2 + 3 + 4 + 5 + ... "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ... "upto n terms") = 3/22` Find the value of n
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
Answer the following:
If `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`, find the value of n
Answer the following:
If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.
The sum of n terms of the series 22 + 42 + 62 + ........ is ______.