Advertisements
Advertisements
प्रश्न
Answer the following:
If `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`, find the value of n
उत्तर
Consider the series 1·3 + 2·5 + 3·7 + ... upto n terms.
Each term of this series is a product of two numbers. The first numbers in the products are 1, 2, 3, ...
Hence, the first number in the rth product is r.
The second numbers in the products are 3, 5, 7, ... which are in A.P. with a = 3 and d = 2. Hence, the second number in the rth product is
a + (r – 1)d = 3 +(r – 1)2 = 2r + 1
∴ the rth term = tr = r(2r + 1)
∴ 1·3 + 2·5 + 3·7 + ... to n terms
∴ `sum_("r" = 1)^"n" "t"_"r" = sum_("r" = 1)^"n" "r"(2"r" + 1)`
= `sum_("r" = 1)^"n" (2"r"^2 + "r")`
Now, `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`
∴ `(sum_("r" = 1)^"n" (2"r"^2 + "r"))/(sum_("r" = 1)^"n" "r"^3) = 5/9`
∴ `(2 sum_("r" = 1)^"n" "r"^2 + sum_("r" = 1)^"n" "r")/(sum_("r" = 1)^"n" "r"^3) = 5/9`
∴ `(2[("n"("n" + 1)(2"n" + 1))/6] + [("n"("n" + 1))/2])/([("n"^2("n" + 1)^2)/4]) = 5/9`
∴ `(("n"("n" + 1))/2[(2(2"n" + 1))/3 + 1])/([("n"^2("n" + 1)^2)/4]) =5/9`
∴ `([(4"n" + 2 + 3)/3])/([("n"("n" + 1))/2]) = 5/9`
∴ `(4"n" + 5)/3 xx 2/("n"^2 + "n") = 5/9`
∴ `(8"n" + 10)/(3"n"^2 + 3"n") = 5/9`
∴ 72n + 90 = 15n2 + 15n
∴ 15n2 – 57n – 90 = 0
∴ 15n2 – 75n + 18n – 90 = 0
∴ 15n(n – 5) + 18(n – 5) = 0
∴ (n – 5)(15n + 18) = 0
∴ n – 5 = 0 or 15n + 18 = 0
∴ n = 5 or n = `(-18)/15`
But n ∈ N,
∴ n ≠ `(-18)/15`
Hence, n = 5
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms 3 + 33 + 333 + 3333 + …
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
Find the sum to n terms 0.7 + 0.77 + 0.777 + ...
Find Sn of the following arithmetico - geometric sequence:
1, 4x, 7x2, 10x3, 13x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, 2/4, 3/16, 4/64, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, -4/3, 7/9, -10/27 ...`
Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`
Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`
Find `sum_("r" = 1)^"n"((1 + 2 + 3 .... + "r")/"r")`
Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... + "r"^3)/("r"("r" + 1))]`
Find the sum 22 + 42 + 62 + 82 + ... upto n terms
Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)
Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Answer the following:
Find 2 + 22 + 222 + 2222 + ... upto n terms
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`
Answer the following:
Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms
Answer the following:
If `(1 + 2 + 3 + 4 + 5 + ... "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ... "upto n terms") = 3/22` Find the value of n
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
Answer the following:
If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.
The sum of n terms of the series 22 + 42 + 62 + ........ is ______.
`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.