मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: If 1×3+2×5+3×7+... upto n terms13+23+33+... upto n terms=59, find the value of n - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If  `(1 xx 3 + 2 xx 5 + 3 xx 7 + ...  "upto n terms")/(1^3 + 2^3 + 3^3 + ...  "upto n terms") = 5/9`, find the value of n

बेरीज

उत्तर

Consider the series 1·3 + 2·5 + 3·7 + ... upto n terms.

Each term of this series is a product of two numbers. The first numbers in the products are 1, 2, 3, ... 

Hence, the first number in the rth product is r.

The second numbers in the products are 3, 5, 7, ... which are in A.P. with a = 3 and d = 2. Hence, the second number in the rth product is

a + (r – 1)d = 3 +(r – 1)2 = 2r + 1

∴ the rth term = tr = r(2r + 1)

∴ 1·3 + 2·5 + 3·7 + ... to n terms

∴ `sum_("r" = 1)^"n" "t"_"r" = sum_("r" = 1)^"n" "r"(2"r" + 1)`

= `sum_("r" = 1)^"n" (2"r"^2 + "r")`

Now, `(1 xx 3 + 2 xx 5 + 3 xx 7 + ...  "upto n terms")/(1^3 + 2^3 + 3^3 + ...  "upto n terms") = 5/9`

∴ `(sum_("r" = 1)^"n" (2"r"^2 + "r"))/(sum_("r" = 1)^"n" "r"^3) = 5/9`

∴ `(2 sum_("r" = 1)^"n" "r"^2 + sum_("r" = 1)^"n" "r")/(sum_("r" = 1)^"n" "r"^3) = 5/9`

∴ `(2[("n"("n" + 1)(2"n" + 1))/6] + [("n"("n" + 1))/2])/([("n"^2("n" + 1)^2)/4]) = 5/9`

∴ `(("n"("n" + 1))/2[(2(2"n" + 1))/3 + 1])/([("n"^2("n" + 1)^2)/4]) =5/9`

∴ `([(4"n" + 2 + 3)/3])/([("n"("n" + 1))/2]) = 5/9`

∴ `(4"n" + 5)/3 xx 2/("n"^2 + "n") = 5/9`

∴ `(8"n" + 10)/(3"n"^2 + 3"n") = 5/9`

∴ 72n + 90 = 15n2 + 15n

∴ 15n2 – 57n – 90 = 0

∴ 15n2 – 75n + 18n – 90 = 0

∴ 15n(n – 5) + 18(n – 5) = 0

∴ (n – 5)(15n + 18) = 0

∴ n – 5 = 0 or 15n + 18 = 0

∴ n = 5 or n = `(-18)/15`

But n ∈ N, 

∴ n ≠ `(-18)/15`

Hence, n = 5

shaalaa.com
Arithmetico Geometric Series
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (20) | पृष्ठ ४२

संबंधित प्रश्‍न

Find the sum to n terms 3 + 33 + 333 + 3333 + …


Find the sum to n terms 0.4 + 0.44 + 0.444 + ...


Find the sum to n terms 0.7 + 0.77 + 0.777 + ...


Find Sn of the following arithmetico - geometric sequence: 

1, 4x, 7x2, 10x3, 13x4, …


Find Sn of the following arithmetico - geometric sequence:

1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, 2/4, 3/16, 4/64, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, -4/3, 7/9, -10/27 ...`


Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`


Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`


Find `sum_("r" = 1)^"n"((1 + 2 + 3  .... +  "r")/"r")`


Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... +  "r"^3)/("r"("r" + 1))]`


Find the sum 22 + 42 + 62 + 82 + ... upto n terms


Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)


Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)


Answer the following:

Find 2 + 22 + 222 + 2222 + ... upto n terms


Answer the following:

Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`


Answer the following:

Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms


Answer the following:

If `(1 + 2 + 3 + 4 + 5 + ...  "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ...  "upto n terms") = 3/22` Find the value of n 


Answer the following:

Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)


Answer the following:

If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.


The sum of n terms of the series 22 + 42 + 62 + ........ is ______.


`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×