मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find ∑r=1n(3r2-2r+1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`

बेरीज

उत्तर

`sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`

= `3sum_("r" = 1)^"n" "r"^2 - 2 sum_("r" = 1)^"n""r" + sum_("r" = 1)^"n" 1`

= `3*("n"("n" + 1)(2"n" + 1))/6 - 2*("n"("n" + 1))/2 + "n"`

= `"n"[(("n" + 1)(2"n" + 1))/2 - ("n" + 1) + 1]`

= `"n"/2(2"n"^2 + 3"n" + 1 - 2"n" - 2 + 2)`

= `"n"/2(2"n"^2 + "n" + 1)`.

shaalaa.com
Arithmetico Geometric Series
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.6 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Find the sum to n terms 8 + 88 + 888 + 8888 + ...


Find the sum to n terms 0.7 + 0.77 + 0.777 + ...


Find Sn of the following arithmetico - geometric sequence: 

2, 4x, 6x2, 8x3, 10x4, …


Find Sn of the following arithmetico - geometric sequence: 

1, 4x, 7x2, 10x3, 13x4, …


Find Sn of the following arithmetico - geometric sequence:

1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, 2/4, 3/16, 4/64, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`3, 6/5, 9/25, 12/125, 15/625, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, -4/3, 7/9, -10/27 ...`


Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`


Find `sum_("r" = 1)^"n"((1 + 2 + 3  .... +  "r")/"r")`


Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... +  "r"^3)/("r"("r" + 1))]`


Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)


Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)


If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ...  "upto n terms")/(1 + 2 + 3 + 4 + ...  "upto n terms") = 100/3,` find n


Answer the following:

Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`


Answer the following:

Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`


Answer the following:

Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms


Answer the following:

Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms


Answer the following:

Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms


Answer the following:

Find 122 + 132 + 142 + 152 + ... 202 


Answer the following:

If `(1 + 2 + 3 + 4 + 5 + ...  "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ...  "upto n terms") = 3/22` Find the value of n 


Answer the following:

Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)


Answer the following:

If  `(1 xx 3 + 2 xx 5 + 3 xx 7 + ...  "upto n terms")/(1^3 + 2^3 + 3^3 + ...  "upto n terms") = 5/9`, find the value of n


Answer the following:

If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.


The sum of n terms of the series 22 + 42 + 62 + ........ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×