Advertisements
Advertisements
प्रश्न
Answer the following:
Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms
उत्तर
Here, tr = `(1^2 + 2^2 + 3^2 + ... + "r"^2)/"r"`
= `(sum_("i" = 1)^"r" "i"^2)/"r"`
= `("r"("r" + 1)(2"r" + 1))/(6"r")`
= `(("r" + 1)(2"r" + 1))/6`
= `(2"r"^2 + 3"r" + 1)/6`
= `1/3"r"^2 + 1/2"r" + 1/6`
∴ `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms
= `sum_("r" = 1)^"n" "t"_"r"`
= `sum_("r" = 1)^"n" (1/3"r"^2 + 1/2"r" + 1/6)`
= `1/3 sum_("r" = 1)^"n" "r"^2 + 1/2 sum_("r" = 1)^"n" "r" + 1/6 sum_("r" = 1)^"n" 1`
= `1/3*("n"("n" + 1)(2"n" + 1))/6 + 1/2*("n"("n" + 1))/2 + 1/6"n"`
= `"n"/2[(("n" + 1)(2"n" + 1))/9 + ("n" + 1)/2 + 1/3]`
= `"n"/2[(2(2"n"^2 + 3"n" + 1) + 9("n" + 1) + 6)/18]`
= `"n"/36(4"n"^2 + 6"n" + 2 + 9"n" + 9 + 6)`
= `("n"(4"n"^2 + 15"n" + 17))/36`.
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms 8 + 88 + 888 + 8888 + ...
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
Find the sum to n terms 0.7 + 0.77 + 0.777 + ...
Find Sn of the following arithmetico - geometric sequence:
2, 4x, 6x2, 8x3, 10x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 4x, 7x2, 10x3, 13x4, …
Find Sn of the following arithmetico - geometric sequence:
3, 12, 36, 96, 240, …
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, 2/4, 3/16, 4/64, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`3, 6/5, 9/25, 12/125, 15/625, ...`
Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`
Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`
Find `sum_("r" = 1)^"n"((1 + 2 + 3 .... + "r")/"r")`
Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... + "r"^3)/("r"("r" + 1))]`
Find the sum 22 + 42 + 62 + 82 + ... upto n terms
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively then show that - 9S22 = S3 (1 + 8 S1)
Answer the following:
Find 2 + 22 + 222 + 2222 + ... upto n terms
Answer the following:
Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`
Answer the following:
Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms
Answer the following:
Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms
Answer the following:
Find 122 + 132 + 142 + 152 + ... 202
Answer the following:
If `(1 + 2 + 3 + 4 + 5 + ... "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ... "upto n terms") = 3/22` Find the value of n
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
Answer the following:
If `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`, find the value of n
The sum of n terms of the series 22 + 42 + 62 + ........ is ______.
`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.