Advertisements
Advertisements
प्रश्न
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
उत्तर
(502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
= (502 + 482 + 462 + … + 22) – (492 + 472 + 452 + …+ 12)
= `sum_("r" = 1)^25 (2"r")^2 - sum_("r" = 1)^25(2"r" - 1)^2`
= `sum_("r" = 1)^25 4"r"^2 - sum_("r" = 1)^25(4"r"^2 - 4"r" + 1)`
= `sum_("r" = 1)^25[4"r"^2 - (4"r"^2 - 4"r" + 1)]`
= `sum_("r" = 1)^25(4"r" - 1)`
= `4sum_("r" = 1)^25 "r" - sum_("r" = 1)^25 1`
= `4 xx (25(25 + 1))/2 - 25`
= `(4(25)(26))/2 - 25`
= 1300 – 25
= 1275
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms 3 + 33 + 333 + 3333 + …
Find the sum to n terms 8 + 88 + 888 + 8888 + ...
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
Find the sum to n terms 0.7 + 0.77 + 0.777 + ...
Find Sn of the following arithmetico - geometric sequence:
1, 4x, 7x2, 10x3, 13x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …
Find Sn of the following arithmetico - geometric sequence:
3, 12, 36, 96, 240, …
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, 2/4, 3/16, 4/64, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`3, 6/5, 9/25, 12/125, 15/625, ...`
Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`
Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms
Find the sum 22 + 42 + 62 + 82 + ... upto n terms
If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... "upto n terms")/(1 + 2 + 3 + 4 + ... "upto n terms") = 100/3,` find n
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively then show that - 9S22 = S3 (1 + 8 S1)
Answer the following:
Find 2 + 22 + 222 + 2222 + ... upto n terms
Answer the following:
Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`
Answer the following:
Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms
Answer the following:
Find 122 + 132 + 142 + 152 + ... 202
Answer the following:
If `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`, find the value of n
Answer the following:
If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.
The sum of n terms of the series 22 + 42 + 62 + ........ is ______.
`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.