Advertisements
Advertisements
प्रश्न
Answer the following:
If `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`, find the value of n
उत्तर
Consider the series 1·3 + 2·5 + 3·7 + ... upto n terms.
Each term of this series is a product of two numbers. The first numbers in the products are 1, 2, 3, ...
Hence, the first number in the rth product is r.
The second numbers in the products are 3, 5, 7, ... which are in A.P. with a = 3 and d = 2. Hence, the second number in the rth product is
a + (r – 1)d = 3 +(r – 1)2 = 2r + 1
∴ the rth term = tr = r(2r + 1)
∴ 1·3 + 2·5 + 3·7 + ... to n terms
∴ `sum_("r" = 1)^"n" "t"_"r" = sum_("r" = 1)^"n" "r"(2"r" + 1)`
= `sum_("r" = 1)^"n" (2"r"^2 + "r")`
Now, `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`
∴ `(sum_("r" = 1)^"n" (2"r"^2 + "r"))/(sum_("r" = 1)^"n" "r"^3) = 5/9`
∴ `(2 sum_("r" = 1)^"n" "r"^2 + sum_("r" = 1)^"n" "r")/(sum_("r" = 1)^"n" "r"^3) = 5/9`
∴ `(2[("n"("n" + 1)(2"n" + 1))/6] + [("n"("n" + 1))/2])/([("n"^2("n" + 1)^2)/4]) = 5/9`
∴ `(("n"("n" + 1))/2[(2(2"n" + 1))/3 + 1])/([("n"^2("n" + 1)^2)/4]) =5/9`
∴ `([(4"n" + 2 + 3)/3])/([("n"("n" + 1))/2]) = 5/9`
∴ `(4"n" + 5)/3 xx 2/("n"^2 + "n") = 5/9`
∴ `(8"n" + 10)/(3"n"^2 + 3"n") = 5/9`
∴ 72n + 90 = 15n2 + 15n
∴ 15n2 – 57n – 90 = 0
∴ 15n2 – 75n + 18n – 90 = 0
∴ 15n(n – 5) + 18(n – 5) = 0
∴ (n – 5)(15n + 18) = 0
∴ n – 5 = 0 or 15n + 18 = 0
∴ n = 5 or n = `(-18)/15`
But n ∈ N,
∴ n ≠ `(-18)/15`
Hence, n = 5
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms 3 + 33 + 333 + 3333 + …
Find the sum to n terms 8 + 88 + 888 + 8888 + ...
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
Find the sum to n terms 0.7 + 0.77 + 0.777 + ...
Find Sn of the following arithmetico - geometric sequence:
2, 4x, 6x2, 8x3, 10x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 4x, 7x2, 10x3, 13x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …
Find Sn of the following arithmetico - geometric sequence:
3, 12, 36, 96, 240, …
Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`
Find `sum_("r" = 1)^"n"((1 + 2 + 3 .... + "r")/"r")`
Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... + "r"^3)/("r"("r" + 1))]`
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms
Find the sum 22 + 42 + 62 + 82 + ... upto n terms
Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)
Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively then show that - 9S22 = S3 (1 + 8 S1)
Answer the following:
Find 2 + 22 + 222 + 2222 + ... upto n terms
Answer the following:
Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms
Answer the following:
Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms
Answer the following:
Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms
Answer the following:
If `(1 + 2 + 3 + 4 + 5 + ... "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ... "upto n terms") = 3/22` Find the value of n
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
The sum of n terms of the series 22 + 42 + 62 + ........ is ______.
`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.