हिंदी

If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively then show that - 9S22 = S3 (1 + 8 S1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively then show that - 9S22 = S3 (1 + 8 S1

योग

उत्तर

S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively.

∴ S1 = `sum_("r" = 1)^"n" "r" = ("n"("n" + 1))/2`

S2 = `sum_("r" = 1)^"n" "r"^2 = ("n"("n" + 1)(2"n" + 1))/6`

S3 = `sum_("r" = 1)^"n" "r"^3 = ("n"^2("n" + 1)^2)/4`

= S3 (1+ 8S1) = `("n"^2("n" + 1)^2)/4[1 + 8*("n"("n" + 1))/2]`

= `("n"^2("n" + 1)^2)/4[1 + 4"n"("n" + 1)]`

= `("n"^2("n" + 1)^2)/4(4"n"^2 + 4"n" + 1)`

= `("n"^2("n" + 1)^2(2"n" + 1)^2)/4`

= `9*("n"^2("n" + 1)^2(2"n" + 1)^2)/36`

= `9*[("n"("n" + 1)(2"n" + 1))/6]^2` = 9S22

Hence, 9S22 = S3(1 + 8S1).

shaalaa.com
Arithmetico Geometric Series
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.6 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.6 | Q 10 | पृष्ठ ४०

संबंधित प्रश्न

Find the sum to n terms 3 + 33 + 333 + 3333 + …


Find the sum to n terms 8 + 88 + 888 + 8888 + ...


Find the sum to n terms 0.4 + 0.44 + 0.444 + ...


Find the sum to n terms 0.7 + 0.77 + 0.777 + ...


Find Sn of the following arithmetico - geometric sequence: 

2, 4x, 6x2, 8x3, 10x4, …


Find Sn of the following arithmetico - geometric sequence:

1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …


Find Sn of the following arithmetico - geometric sequence:

3, 12, 36, 96, 240, …


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, 2/4, 3/16, 4/64, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, -4/3, 7/9, -10/27 ...`


Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`


Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`


Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms


Find the sum 22 + 42 + 62 + 82 + ... upto n terms


Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)


Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)


Answer the following:

Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`


Answer the following:

Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms


Answer the following:

Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms


Answer the following:

Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms


Answer the following:

Find 122 + 132 + 142 + 152 + ... 202 


Answer the following:

If `(1 + 2 + 3 + 4 + 5 + ...  "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ...  "upto n terms") = 3/22` Find the value of n 


Answer the following:

Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)


Answer the following:

If  `(1 xx 3 + 2 xx 5 + 3 xx 7 + ...  "upto n terms")/(1^3 + 2^3 + 3^3 + ...  "upto n terms") = 5/9`, find the value of n


Answer the following:

If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.


The sum of n terms of the series 22 + 42 + 62 + ........ is ______.


`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×