Advertisements
Advertisements
प्रश्न
Answer the following:
Find 122 + 132 + 142 + 152 + ... 202
उत्तर
122 + 132 + 142 + 152 + ... 202
= (12 + 22 + 32 + 42 + … + 202) – (12 + 22 + 32 + 42 + … + 112)
= `sum_("r" = 1)^20 "r"^2 - sum_("r" = 1)^11 "r"^2`
= `(20(20 + 1)(2 xx 20 + 1))/6 - (11(11 + 1)(2 xx 11 + 1))/6`
= `(20 xx 21 xx 41)/6 - (11 xx 12 xx 23)/6`
= 2870 – 506
= 2364
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms 3 + 33 + 333 + 3333 + …
Find Sn of the following arithmetico - geometric sequence:
2, 4x, 6x2, 8x3, 10x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 4x, 7x2, 10x3, 13x4, …
Find Sn of the following arithmetico - geometric sequence:
3, 12, 36, 96, 240, …
Find the sum to infinity of the following arithmetico - geometric sequence:
`3, 6/5, 9/25, 12/125, 15/625, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, -4/3, 7/9, -10/27 ...`
Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`
Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`
Find `sum_("r" = 1)^"n"((1 + 2 + 3 .... + "r")/"r")`
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms
Find the sum 22 + 42 + 62 + 82 + ... upto n terms
Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)
If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... "upto n terms")/(1 + 2 + 3 + 4 + ... "upto n terms") = 100/3,` find n
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively then show that - 9S22 = S3 (1 + 8 S1)
Answer the following:
Find 2 + 22 + 222 + 2222 + ... upto n terms
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`
Answer the following:
Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms
Answer the following:
Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms
Answer the following:
Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms
Answer the following:
If `(1 + 2 + 3 + 4 + 5 + ... "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ... "upto n terms") = 3/22` Find the value of n
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
Answer the following:
If `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`, find the value of n