हिंदी

Answer the following: If 1+2+3+4+5+... upto n terms1×2+2×3+3×4+4×5+... upto n terms=322 Find the value of n - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If `(1 + 2 + 3 + 4 + 5 + ...  "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ...  "upto n terms") = 3/22` Find the value of n 

योग

उत्तर

`(1 + 2 + 3 + 4 + 5 + ...  "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ...  "upto n terms") = 3/22`

∴ `(sum_("r" = 1)^"n""r")/(sum_("r" = 1)^"n" "r"("r" + 1)) = 3/22`

∴ `(sum_("r" = 1)^"n" "r")/(sum_("r" = 1)^"n" ("r"^2 + "r")) = 3/22`

∴ `(sum_("r" = 1)^"n" "r")/(sum_("r" = 1)^"n" "r"^2 + sum_("r" = 1)^"n" "r") = 3/22`

∴ `([("n"("n" + 1))/2])/([("n"("n" + 1)(2"n" + 1))/6] + [("n"("n" + 1))/2]) = 3/22`

∴ `([("n"("n" + 1))/2])/("n"(("n" + 1))/2[(2"n" + 1)/3 + 1]) =3/22`

∴ `1/(((2"n" + 1 + 3)/3)) = 3/22`

∴ `3/(2"n" + 4) = 3/22`

∴ `1/("n" + 2) = 1/11`

∴ n + 2 = 11

∴ n = 9

shaalaa.com
Arithmetico Geometric Series
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (18) | पृष्ठ ४२

संबंधित प्रश्न

Find the sum to n terms 3 + 33 + 333 + 3333 + …


Find the sum to n terms 8 + 88 + 888 + 8888 + ...


Find the sum to n terms 0.4 + 0.44 + 0.444 + ...


Find Sn of the following arithmetico - geometric sequence: 

2, 4x, 6x2, 8x3, 10x4, …


Find Sn of the following arithmetico - geometric sequence: 

1, 4x, 7x2, 10x3, 13x4, …


Find Sn of the following arithmetico - geometric sequence:

1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, 2/4, 3/16, 4/64, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`3, 6/5, 9/25, 12/125, 15/625, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, -4/3, 7/9, -10/27 ...`


Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`


Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`


Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... +  "r"^3)/("r"("r" + 1))]`


Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms


Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)


Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)


Answer the following:

Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`


Answer the following:

Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms


Answer the following:

Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms


Answer the following:

Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms


Answer the following:

Find 122 + 132 + 142 + 152 + ... 202 


Answer the following:

Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)


Answer the following:

If  `(1 xx 3 + 2 xx 5 + 3 xx 7 + ...  "upto n terms")/(1^3 + 2^3 + 3^3 + ...  "upto n terms") = 5/9`, find the value of n


The sum of n terms of the series 22 + 42 + 62 + ........ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×