Advertisements
Advertisements
प्रश्न
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
उत्तर
Sn = 0.4 + 0.44 + 0.444 + … upto n terms
= 4(0.1 + 0.11 + 0.111 + …. upto n terms)
= `4/9` (0.9 + 0.99 + 0.999 + ... upto n terms)
= `4/9` [(1 − 0.1) + (1 − 0.01) + (1 − 0.001) ... upto n terms]
= `4/9` [(1 + 1 + 1 ... n times) − (0.1 + 0.01 + 0.001 + ... upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P.
with a = 0.1, r = `0.01/0.1` = 0.1
∴ Sn = `4/9{"n" - 0.1[(1 - (0.1)^"n")/(1 - 0.1)]}`
∴ Sn = `4/9 {"n" - 0.1/0.9 [1 - (0.1)^"n"]}`
∴ Sn = `4/9 ["n" - 1/9 (1 - (0.1)^"n")]`
∴ Sn = `4/81 {9"n" - (1 - 1/10^"n")}`
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms 8 + 88 + 888 + 8888 + ...
Find Sn of the following arithmetico - geometric sequence:
2, 4x, 6x2, 8x3, 10x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, 2/4, 3/16, 4/64, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`3, 6/5, 9/25, 12/125, 15/625, ...`
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, -4/3, 7/9, -10/27 ...`
Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`
Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`
Find `sum_("r" = 1)^"n"((1 + 2 + 3 .... + "r")/"r")`
Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... + "r"^3)/("r"("r" + 1))]`
Find the sum 22 + 42 + 62 + 82 + ... upto n terms
Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)
Answer the following:
Find 2 + 22 + 222 + 2222 + ... upto n terms
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`
Answer the following:
Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms
Answer the following:
Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms
Answer the following:
Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
Answer the following:
If `(1 xx 3 + 2 xx 5 + 3 xx 7 + ... "upto n terms")/(1^3 + 2^3 + 3^3 + ... "upto n terms") = 5/9`, find the value of n
Answer the following:
If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.
The sum of n terms of the series 22 + 42 + 62 + ........ is ______.
`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.