Advertisements
Advertisements
प्रश्न
Find the sum to infinity of the following arithmetico - geometric sequence:
`3, 6/5, 9/25, 12/125, 15/625, ...`
उत्तर
S = `3 + 6/5 + 9/5^2 + 12/5^3 + 15/5^4 + ...` ...(i)
Multiplying (i) by `1/5`, we get
`1/5"S" = 3/5 + 6/5^2 + 9/5^3 + 12/5^4 + 15/5^5 + ...` ...(ii)
Equation (i) – (ii), we get
`4/5"S" = 3 + (3/5 + 3/5^2 + 3/5^3 + ...)`
The terms `3/5, 3/5^2, 3/5^3` are in G.P.
∴ a = `3/5`, r = `1/5`
Since, |r| = `|1/5| < 1`
∴ sum to infinity exists.
∴ `4/5"S" = 3 + (3/5)/(1 - 1/5)`
= `3 + 3/4`
∴ `4/5"S" = 15/4`
∴ S = `75/16`
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms 3 + 33 + 333 + 3333 + …
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
Find the sum to n terms 0.7 + 0.77 + 0.777 + ...
Find Sn of the following arithmetico - geometric sequence:
2, 4x, 6x2, 8x3, 10x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 4x, 7x2, 10x3, 13x4, …
Find Sn of the following arithmetico - geometric sequence:
1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …
Find Sn of the following arithmetico - geometric sequence:
3, 12, 36, 96, 240, …
Find the sum to infinity of the following arithmetico - geometric sequence:
`1, 2/4, 3/16, 4/64, ...`
Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`
Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`
Find `sum_("r" = 1)^"n"((1 + 2 + 3 .... + "r")/"r")`
Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... + "r"^3)/("r"("r" + 1))]`
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms
Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)
Answer the following:
Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`
Answer the following:
Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`
Answer the following:
Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms
Answer the following:
Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms
Answer the following:
Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms
Answer the following:
Find 122 + 132 + 142 + 152 + ... 202
Answer the following:
If `(1 + 2 + 3 + 4 + 5 + ... "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ... "upto n terms") = 3/22` Find the value of n
Answer the following:
Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)
Answer the following:
If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.
The sum of n terms of the series 22 + 42 + 62 + ........ is ______.
`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.