हिंदी

Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)

योग

उत्तर

1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)

= `sum_("r" = 1)^"n" (2"r" - 1)(2"r" + 1)(2"r"+ 3)`

= `sum_("r" = 1)^"n" (4"r"^2 - 1)(2"r" + 3)`

= `sum_("r" = 1)^"n"(8"r"^3 + 12"r"^2 - 2"r" - 3)`

= `8sum_("r" = 1)^"n" "r"^3 + 12 sum_("r" = 1)^"n" "r"^2 - 2 sum_("r" = 1)^"n" "r" - 3 sum_("r" = 1)^"n" 1`

`=8.("n"^2("n" + 1)^2)/4 + 12*("n"("n" + 1)(2"n" + 1))/6 - 2.("n"("n" + 1))/2 - 3"n"`

= 2n2(n + 1)2 + 2n(n + 1)(2n + 1) – n(n + 1) – 3n

= n[2n(n2 + 2n + 1) + 2(2n2 + 3n + 1) – (n + 1) – 3]

= n(2n3 + 4n2 + 2n + 4n2 + 6n + 2 – n – 1 – 3)

= n(2n3 + 8n2 + 7n – 2)

shaalaa.com
Arithmetico Geometric Series
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.6 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.6 | Q 8 | पृष्ठ ४०

संबंधित प्रश्न

Find the sum to n terms 3 + 33 + 333 + 3333 + …


Find the sum to n terms 8 + 88 + 888 + 8888 + ...


Find the sum to n terms 0.4 + 0.44 + 0.444 + ...


Find the sum to n terms 0.7 + 0.77 + 0.777 + ...


Find Sn of the following arithmetico - geometric sequence: 

2, 4x, 6x2, 8x3, 10x4, …


Find Sn of the following arithmetico - geometric sequence: 

1, 4x, 7x2, 10x3, 13x4, …


Find Sn of the following arithmetico - geometric sequence:

1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …


Find Sn of the following arithmetico - geometric sequence:

3, 12, 36, 96, 240, …


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, 2/4, 3/16, 4/64, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`3, 6/5, 9/25, 12/125, 15/625, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, -4/3, 7/9, -10/27 ...`


Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`


Find `sum_("r" = 1)^"n"((1 + 2 + 3  .... +  "r")/"r")`


Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... +  "r"^3)/("r"("r" + 1))]`


Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms


Find the sum 22 + 42 + 62 + 82 + ... upto n terms


Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)


If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ...  "upto n terms")/(1 + 2 + 3 + 4 + ...  "upto n terms") = 100/3,` find n


Answer the following:

Find 2 + 22 + 222 + 2222 + ... upto n terms


Answer the following:

Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`


Answer the following:

Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms


Answer the following:

Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms


Answer the following:

Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms


Answer the following:

Find 122 + 132 + 142 + 152 + ... 202 


Answer the following:

If `(1 + 2 + 3 + 4 + 5 + ...  "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ...  "upto n terms") = 3/22` Find the value of n 


Answer the following:

If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.


The sum of n terms of the series 22 + 42 + 62 + ........ is ______.


`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×